UNIT PLAN TERM: 1 **SUBJECT: PHYSICS** UNIT: 2 YEAR: 2024 – 2025 WEEK TOPICS **OBJECTIVES** DATE Use the equation Q = It to solve Electrical 1 Quantities problems Define the coulomb 1 1-1 7 Define the volt September Use the equation V = IR to solve 9-13 problems Define and use the term resistivity ρ using the equation $R = (\rho l)/A$ Explain drift velocity Derive and use the equation I = nevA2 Electrical circuits I-V characteristics for metals, 2.1-2.5 semiconductors and filament lamp Resistance versus temperature curves for thermistors with negative September temperature coefficients. Distinguish between e.m.f. and p.d. 16-20 Solve problems using terminal p.d. Draw and interpret circuit diagrams using Kirchoff's law. 3 Use Kirchoff's laws to solve problems Sep 23- 27 involving circuit networks Revision and Graded class work # 1 4 Electrical circuits Derive and use formula for two or more resistors a) in series b) in parallel. continued 2.6-2.9 Use the potential divider as source of Sep 30 - oct 4 variable and fixed p.d. Use the Wheatstone bridge as a means of comparing resistance, treating it as a double potential divider. 5 Oct 7- 11 • Revision and graded class work # 2 Mid term break 6 Oct 17-21 Lab # 1 and Lab # 2 Oct 14-16 First Six week test Oct 22 - 25 7 Electric Fields Explain the difference between 3.1-3.13 electrical insulators and conductors Discuss a) applications of electrostatic phenomena and b) hazards associated with charging by friction. Explain the action of lightning rods in Oct 28-Nov 1 the protection of buildings. Use Coulomb's law to solve problems • Use E = $4\pi\overline{\epsilon_{o}r^{2}}$ for the field strength due to a point charge. | | | | Calculate the field strength between two
charged metal plates using E = V/d | |-------|--------------------|-----------------------------|--| | WEEK | | TOPICS | OBJECTIVES | | 8 | Nov 4 - 8 | Electric fields
(Cont'd) | Calculate the force on a charge in a uniform electric field using F = EQ. Describe effect of electric field on charges moving in it. Compare motion of charged particles moving in electric field to movements in a gravitational field and solve numerical problems LAB #3 | | 9 | Nov 11- 14 | Electric fields
(Cont'd) | Recall that field strength is numerically equal to potential gradient Use the equation V = Q/4πε_or for the potential due to a point charge. Calculate the potential at a point due to several point charges Worksheet | | 10 | Nov 18 - 22 | Capacitors
4.1-4.7 | Explain the 'farad' and use C = Q/V and C = єA/d to solve problems. Derive and use formulae for capacitors a) in series b) in parallel Use the formulae for energy stored as W = CV²/2 = QV/2 = Q²/2C Recall and use the exponential equations for discharge of capacitors Sketch graphs for a) charging b) discharging a capacitor. Class quiz # 3 | | 11 | Nov 25 - 29 | Magnetic Fields 5.1-5.3 | Explain magnetic flux density and the 'tesla'. Sketch magnetic flux patterns due to long straight wire, flat circular coil and solenoid Use expression for magnetic flux density associated with long straight wire, flat circular coil and solenoid Example: B = μ₀nI | | 12 13 | Dec 2- 6 Dec 9- 13 | Magnetic forces 6.1-6.11 | 2nd six week test Use Fleming's left hand rule effectively Recall and use the equation F = BIL sine to solve problems. Explain how to measure flux density using a current balance. Predict the direction of the force on a moving charge in a magnetic field. | | WEEK | DATE | TOPICS | OBJECTIVES | |---------|----------|-----------------------------------|---| | (Cont'd | | | Use the expression F = BQvsine to solve problems. Solve problems for charged particles moving in electric and magnetic fields perpendicular to each other. Describe the effect of soft iron core on the magnetic field due to a solenoid Explain principle of the electromagnet and how it is used in door locks, switches and other applications. Explain the origin of forces between current carrying conductors and predict the direction of the forces. Explain the Hall Effect. Use the Hall probe to measure Flux density. | | 13 | Optional | Electromagnetic Induction 7.1-7.9 | Explain magnetic flux and magnetic flux linkage using the relevant equations Φ = BA and φ = BAN to solve problems Explain the 'weber'. Describe and interpret experiments that demonstrate electromagnetic induction and the associated variables. Determine induced e.m.f. using Faraday's law. Use Lenz's law to determine direction of induced e.m.f. and discuss its application to energy conservation. Explain applications of electromagnetic induction. Explain the principle of operation of the simple transformer. Use the relationship N_s/N_p = V_s/V_p = I_p/I_s for the ideal transformer |